R Workshop 2024 in UTokyo
UTokyo & Tsinghua University
PhD Candidate in Political Science, Tsinghua University
Visiting Researcher at ISS
Research interests: Political Psychology, Natural Language Processing
Dissertation: How and why Hong Kong uses CCP discourse, and its empirical impact
R → Your Phone
R Studio/VS Code → iOS/Android
R packages → Apps
R Basic → iMessage
packages from other source → Line
function → Message Sending
object → Contact
:::
IDEs (Integrated Development Environments)

and … VS Code/pycharm/Positron


subset(), merge(), apply()t.test(), lm(), summary()plot(), hist(), boxplot()if, for, whilefilter(), select(), mutate(), summarize()ggplot(), geom_point(), geom_line()gather(), spread(), separate(), unite()shinyApp(), fluidPage(), server()mean(), sum(), length()function_name <- function(arg1, arg2) { ... }my_functionfunction(arg1, arg2){ ... }return()return(result)
Hot Potato(“ばくだんゲーム”; “击鼓传花”) but one by one version

<-Assignment operator, the shorthand for the assign() command
Syntax: <
variable name><-<object>
<-?Alt + -option + -1stday).. and _ (Error: M&M).X != x) ! means "not"/"no",!=` means “not equal to”.list <- c(1:5)).Hot Keyboard Time!
Hot Keyboard Time!
###Data Types That Can Be Read Directly
.RDS (single object).RData (multiple objects).txt.csvSyntax: <
name><-<read command>(<data path>)
Call the package through library or require, and then use the commands in it.
# SPSS, Stata, SAS
library(haven)
df_spss <- read_spss("<FileName>.sav")
df_stata <- read_dta("<FileName>.dta")
df_sas <- read_sas("<FileName>.sas7bdat")
# Quick Import of Forms
library(reader)
df_csv <- read.csv("<FileName>.csv")
df_table <- read.table("<FileName>.csv/txt")
# Excel
library(readxl)
df_excel <- read_excel("<FileName>.xls")
df_excel2 <- read_excel("<FileName>.xlsx")
# JSON (JavaScript Object Notation)
library(rjson)
df_json <- fromJSON(file = "<FileName>.json" )
# XML/Html
library(xml)
df_xml <- xmlTreeParse("<url>")
df_html <- readHTMLTable(url, which=3)Hot Keyboard Time!
The Swiss Army Knife of data reading:rio
Syntax:
( , file = )
load("/Users/adrian/Documents/Yufei_Sun/THU/projects/slides/course/rworkshop_in_UTokyo/wvs7.rda")
wvs7
nrow(wvs7) # Get the number of rows in the data
ncol(wvs7) # Get the number of columns in the data
names(wvs7) # Get the variable/column names
str(wvs7) # Get variable names, types, number of rows and columnsAttributes are attributes of all types of variables.
length(wvs7$age) # Get the length of the variable (here it is the number of rows)
unique(wvs7$age) # Get the unique values of the variable
summary(wvs7$age) # Get all the above information about the year
class(wvs7$age) # Check the structure of the year: vector, matrix, array, dataframe, list
typeof(wvs7$age) # Check the type of the year elementsinstall.packages(): Installing packageslibrary() or require(): Loading packageshelp() or ?: Accessing function documentationreadRDS(), read.table(), read.csv(): Reading various file formatssaveRDS(), save(), write.csv(): Saving in different formatsrio::import(): The “Swiss Army Knife” for data readingnrow(), ncol(): Get number of rows and columns names(): Get variable/column namesstr(): Get variable names, types, number of rows and columnsdataframe[, "variable"] or dataframe$variable: Extracting variablestable(), summary(): Examining variable characteristicslevels(): Understanding factor variableslength(), unique(), class(), typeof()Github Page: https://github.com/syfyufei
Email: sunyf20@mails.tsinghua.edu.cn
Personal Website:https://syfyufei.github.io/

SUN Yufei(Adrian)